非线性科学研究中心
 
Home | News | Research | People | Publications | Courses | NetworkScience | Conference | Workshop | Links | Softwares
   
 

 

推荐 | NOCAD - Network based Observability and Controlability Analysis of Dynamical Systems toolbox

2023年06月13日 09:09 Web 点击:[]

NOCAD - Network based Observability and Controlability Analysis of Dynamical Systems toolbox

NOCAD - Network based Observability and Controlability Analysis of Dynamical Systems toolbox (MATLAB version)

Cite As

Janos Abonyi (2023). NOCAD - Network based Observability and Controlability Analysis of Dynamical Systems toolbox (https://github.com/abonyilab/NOCAD), GitHub. Retrieved.

使用示例:

adj=[
0 1 0 0 0 0 0 0 0;
1 0 1 0 0 0 0 0 0;
1 0 0 0 0 0 0 0 0;
0 1 0 0 1 1 1 0 0;
0 1 0 1 0 0 1 0 0;
0 0 0 1 0 0 1 0 0;
0 0 0 0 0 0 0 0 1;
0 0 0 0 0 1 0 0 0;
0 0 0 0 0 0 0 0 0];

if ~exist('generateMatricesPF', 'file')
  mfilepath=fileparts(which('toolboxExample'));
  addpath([mfilepath,'\module1']);
end
if ~exist('matricesToStruct', 'file')
  mfilepath=fileparts(which('toolboxExample'));
  addpath([mfilepath,'\module2']);
end
if ~exist('extendData', 'file')
  mfilepath=fileparts(which('toolboxExample'));
  addpath([mfilepath,'\module3']);
end

mesConfig = getConfig();
targetDegree = 2;
alphaPar = 0.5;

% module 1
[A,B,C,D] = generateMatricesPF(adj);
% module 2
data = matricesToStruct(A, B, C, D, mesConfig);
% module 3
data = extendData(data, targetDegree, alphaPar);
data = robust(data);


软件包包含的目录如下:

module1

module2

module3

octave-networks-toolbox


上一条:推荐 | Exact controllability of complex networks 下一条:推荐 | gaimc : Graph Algorithms In Matlab Code

关闭

  读取内容中,请等待...

版权所有:Research Centre of Nonlinear Science 邮政编码:430073
E-mail:liujie@wtu.edu.cn 备案序号: 鄂ICP备15000386号 鄂公网安备 42011102000704号